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Simplest Momentum Conservation Equation
for a Magnetically Confined Plasma

!p " 1
c
J #B = 0

B !"# = 0
B !"p = 0# p = p $( )

p = n Te +Ti( )
B !"Te = 0#Te +Te $( )

(large longitudinal electron thermal conductivity)

 Ti ! Te , T = 1
2
Te +Ti( ) = T !( ),

n = n !( ).
Thus surfaces of constant n should overlap with surfaces of constant T. 
Contradicted by the experiments on axisymmetric plasmas with 
non-circular cross sections.

then

If
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Axisymmetric Configurations (Magnetically Confined Plasmas)
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(so called G-S equation),  where 
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Then

On the other hand, under stationary conditions,

where      is the “loop voltage”.VL
0
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Considering toroidal configurations with  large aspect ratios and
circular cross sections, the plasma longitudinal conductivity in trapped
particle regimes is, for
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No evidence for this (as far as I know).
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This is where a self organization
process has to come in, as the
experimental evidence for the
existence of a radial “profile
consistency” (B.C., 1980) of the
electron temperature suggests.
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In dealing with axisymmetric pulsar magnetospheres we have to take

 
B ! 1

R
!" # e$ + I " ,  z( )e$%& '(

In this case the magnetic force FM  is given by 
 

FM = 1
c
J !B = " 1

4#R2
$%&( )'& + I'I " 'I !'&( ){ }  

 

and has a toroidal component. 

Brief Comments on Pulsar Models

As poloidal currents producing slowing down                         have to be present.

That is,  I  is not a function of       only and is an odd function.  The relevant 

magnetic configuration equation was derived originally in 1971 (published 

in Ap. J., 1973).

!0 =!0 t( )"# $%
!
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Two-dimensional Plasma and
Field Configurations Around Black Holes

General Relativity corrections are neglected at first.  The plasma is rotating 

around a central object with a velocity 

V! = R" R,  z( )  
where  

 " R,  z( ) ! "k R( ) +#" R,  z( )  , 

"k $ GM% R3( )1
2  is the Keplerian frequency for the central object of mass M%  

and whose gravity is prevalent (that is, the plasma self gravity can be neglected) 

and  #" "k <1.  We assume, for simplicity that I = I &( ) .  Then 
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as in the case considered earlier of magnetically confined plasmas.
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In the case that we consider, the total momentum conservation equation, that 

includes both the toroidal rotation velocity and the effect of the gravitational field of 

the a central object, is 

!" #2ReR +$%G( ) = !$p + 1
c
J &B      ( I )  

where 

%G = GM'

R2 + z2
,    
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Then we have 

B /$p = "R #2 !#k
2( )BR ! z"#k

2Bz 0 0  

 

and if we apply the $&  operator on Eq. (I) we obtain 
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This can be rewritten as 
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and we call it the “Master Equation”.  
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We note that the vertical momentum conservation equation is, considering the 

expression for FMz  given earlier, 
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Clearly, we have two equations, (*) and (**), which give & R,  z( )  and p R,  z( )  
for reasonable choices of the density # R,  z( ), the poloidal current function I &( ) , 
and /$ & 1( ) . 

Is it possible to find profiles that are consistent with known thermal energy 

balance equations? 
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In order to proceed further we consider a radial interval R ! R0 < R0  around a  

given radius R0 .  Then  

 
" ! "k R0( ) + R ! R0( ) d"k

dR R=R0

+#"  

 

and we comply with the isorotation condition " = " $( )  defining $ z $ 0k  by 

 

R ! R0( ) d"k

dR R=R0

= "0
k
$ z

$ 0k

 

and $ 1 B0  by  

 
2"R#" ! 2"k

0 d"k
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B0
= !"D

2 $ 1

B0R0
, 

 
where  "D

2 % !Rd"2 dR2 = 3"k
2  is considered to be the “driving factor” for the 

onset of the magnetic configurations that are analyzed and $ 1 B0R
2
0( )2 <1. 
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On the other hand, for the configurations we shall consider 
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!R  >!
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In this case  %
2 # !2 !R2 + !2 !z2  and the Master Equation reduces to 
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that is independent of the toroidal field component. 

In this connection we note that the derivation of t he Master Equation is 

compatible with a pressure tensor of the form  

P = pth I + p
Fe.e.  
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Axisymmetric Configuration with Toroidal Rotation
No gravity: Simplest Master “Equation”

0 = !"p +#2$ReR +
1
c
J %B (1)

B !"p =#2$RBR

e! "# $  Eq. (1) 

0 = e! "# $ %2&ReR( ) + 1
4'
e! "# $ B "#B( )

! =! "( )

(2)

(3)

(4)
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